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Abstract. The macroscopic behavior of high-temperature superconductors is described by a nonlinear
response function in combinations with Maxwell equations. This function is compatible with the sug-
gested different model pinning barriers U(J). A comparison of this function to the scaling behavior of
the isothermal current-voltage characteristics measured in twinned YBa2Cu3O7−δ(YBCO) samples shows
fair agreement. We also compare the amplitude dependence of ac susceptibility derived from this function
with several experimental results of high-temperature superconductors and find a general power law in the
out-of-phase χ′′ peak shift.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) –
74.25.Nf Response to electromagnetic fields (nuclear magnetic resonance, surface impedance, etc.)

1 Introduction

The importance of thermal fluctuations, the character-
ized short coherence length and the large anisotropy
of high-temperature superconductors (HTSC) give rise
to a vortex system with a number of interesting fea-
tures. The static and dynamic response of such a sys-
tem has been the subject of numerous recent experi-
mental and theoretical investigations [1]. The analysis of
current-voltage I-V characteristics measured in twinned
YBa2Cu3O7−δ(YBCO) [2,3] with the magnetic field ap-
plied in the c direction, in terms of the vortex-glass scal-
ing theory [4], provide impressive evidence of a second
order phase transition. However, Nelson and Vinokur
questioned whether these transitions are really caused by
uncorrelated disorder as assumed in the original vortex-
glass phenomenology [4] because twin boundaries offer
much stronger pinning [5]. The low temperature glassy
phase stabilized by correlated defects like twin boundary,
columnar pinning center etc. is called as Bose-glass. For
fields parallel to c axis, the Bose-glass theory predicts for
the I-V characteristics with similar critical exponent rela-
tion as given by the vortex-glass theory. Another attempt
to explain the experimental data of Koch et al. in refer-
ence [2] has been made by Coppersmith et al. [6] in terms
of the flux-creep-flow model [7]. Though this model re-
produces the qualitative features of the data, it fails to
give a quantitative fit. The exponent values needed to col-
lapsed the I-V curves in the model of Coppersmith et al.
are z = 13.5 and ν = 0.6 [7] in contrast to z = 4.8 and
ν = 1.7 from the experimental data of reference [2]. Thus,
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this reinterpretation has been reasonably questioned [8].
Parallel to the dc transport, the ac magnetic susceptibil-
ity measurement is also a powerful method of investigat-
ing the behavior of vortex system. The application of a
time-dependent field H(t) = H0 + hace−iωt to the sample
surface results in an electric-field gradient in the sample
interior (hac is the ac-field amplitude and ω the angular
frequency). This gives rise to a shielding current, which
in turn exerts a Lorentz force on the vortices in the sam-
ple. The measurements of such ac response contain much
valuable information about pinning and creep of vortices,
and turn out to be useful to test models describing the ac
losses which have to be carefully characterized and mon-
itored for many applications. The controversy over the
analysis of the ac response is often noteworthy because
of the complicate interplay of hysteretic and eddy-current
losses [9].

Generally speaking, the equations that describe the be-
havior of the vortex system on a macroscopic scale are the
Maxwell equations combined with the materials equation
of superconductors J(E, B, T ). Various models suggested
in literature correspond to different specific forms of the
materials equation.

In the case of ideal type-II superconductors with neg-
ligible flux pinning, the material can be characterized
by the equation E = ρf(B, T )J with ρf ≈ ρnB/Bc2,
the flux-flow resistivity as estimated by Bardeen and
Stephen [10]. On the other hand, in nonideal superconduc-
tors with considerable pinning, the material is described
by a set of equations E = B× v, v = v0 exp(−U(J)/kT )
or E(J) = Jρfe−U(J)/kT , where the activation bar-
rier U additionally depends on the temperature T and
magnetic field B. Different types of U(J) have been
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suggested to approximate the real barrier, for instance, the
Anderson-Kim model [7] with U(J) = Uc(1 − J/Jc), the
logarithmic barrier U(J) = Uc ln(Jc/J) [11] and the in-
verse power-law with U(J) = Uc[(Jc/J)µ − 1] [4,12,13].

In present work, we want to show that both dc trans-
port and ac response of HTSC can be described consis-
tently by using a unified materials equation [14,15]. In
subsequent section, we briefly introduce the nonlinear re-
sponse function and show its connection with the critical-
state model. In Section 3, we compare this equation with
the widely quoted transport experimental results of Koch
et al. [2,8]. A further discussion of the critical current and
ac response is given in Section 4. Finally we conclude by
a short summary.

2 Nonlinear response function

In view of the finding of Bardeen and Stephen [10], for
the steady-state of flux motion in nonideal type-II super-
conductor the mean transport current density J can be
phenomenologically expressed as

J = Jp + Jf (1)

with

Jf ≡ E(J)/ρf (2)

the component due to the moving vortices of uniform den-
sity. Jp is the contribution from the pinned vortices.

We find, if one makes a common modification to the
different model barriers U(J) as

U(J)→ U(Jp ≡ J −E/ρf), (3)

the corresponding modified materials equation

E(J) = Jρfe−U(Jp)/kT (4)

leads to a common normalized form as

y = x exp[−γ(1 + y − x)p] (5)

with x and y the normalized current density and electric
field respectively. γ is a parameter characterizing the sym-
metry breaking of the pinned vortices system and p is an
exponent.

To show the connection of the nonlinear response func-
tion equation (5) with the critical-state model U(J), we
start from the expression widely used for flux creep with
the logarithmic barrier [11],

E(J) = ρfJ exp
[
− Uc

kT
ln
(
Jc0

J

)]
· (6)

Substituting Jp ≡ J−E(J)/ρf for the current density J in
the bracket on the right-hand side of equation (6), we get

E(J) = ρfJ exp
[
− Uc

kT
ln
(
Jc0

Jp

)]
· (7)
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Fig. 1. Numerical solutions of equation (5) (open symbols)
and equation (11) (lines) for comparison.

The definition of barrier implies Jc0 ≥ Jp. Using the ap-
proximation

ln η =
∞∑
n=1

1
n

(1− η−1)n ≈ a(1− η−1)p,
(
η >

1
2

)
, (8)

finally we find equation (7) in the form

ln
(
x

y

)
= γ(1 + y − x)p, (9)

which is the general normalized form of the materials
equation (5). Here we have

γ ≡ a Uc

kT
x ≡ J

Jc0
y ≡ E(J)

ρfJc0
· (10)

In earlier works, this materials equation for type-II su-
perconductors has also been shown in connection with
the Anderson-Kim model and the inverse power-law
U(J) [14,15].

The numerical factor a in the approximation equa-
tion (8) should be evaluated with considering the limi-
tation of sample size to the realistic barrier U(J) as dis-
cussed in references [13–15]. Considering this limitation as
a cut-off of the series in equation (8), we have

a =
Nc∑
n=1

1
n

= C + lnNc,

where C is the Euler constant and Nc corresponds to the
realistic cut-off of the series in equation (8). Usually a is
of the order 2-4. Ignoring this limitation, one gets from
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equation (7) an even simpler expression

E(J) = ρfJ

(
Jp

Jc0

)Uc/kT

or

y/x = (x− y)σ (11)

with σ = Uc/kT , though the latter can not be used to in-
terpret the case with small barrier and thermally activated
flux-flow (TAFF). In Figure 1, we show the numerical so-
lutions of equations (5, 11) for comparison.

Equation (5) gives a relation between the parameter γ
and the slope

S ≡ d ln y
d lnx

=
1 + p γ x(1 + y − x)p−1

1 + p γ y(1 + y − x)p−1
· (12)

The maximal slope Smax occurs at the inflection point
(xi, yi) of isotherm ln y − lnx, where

p2γ2xiyi(1 + yi − xi)2p−1 = 1− p(xi − yi), (13)

and we have the power law V ∝ ISmax .
From equations (12, 13) we get

Smax =
1 + γxiζ

1 + γyiζ
≈
(
xi
yi

)1/2

(14)

and

γ2xiyi = 1/ζ2, (15)

where ζ2 ≡ p2(1 + yi − xi)2p−1/[1 − p(xi − yi)] ≈
1. In view of the numerical solution of equation (5)
as shown in Figure 1, one finds xi ≈ 1. Thus from
equations (14, 15), we have approximately the relation

γ ≈ 2S2
max lnSmax. (16)

3 Scaling behavior of isothermal E(J) curves

Now we compare our equation (5) with the scaling be-
havior of the experimentally measured isothermal E(J)
curves obtained by Koch et al. with YBCO samples [2,8].
At different temperatures and magnetic fields, they found
that for each field at a single well defined temperature T ,
the I-V curve shows a power-law behavior V ∝ IS . This
temperature is defined as Tg. All the isotherms can be col-
lapsed onto two scaling functions, for T > Tg and T < Tg

correspondingly, by plotting V/I scaled by |T − Tg|ν(z−1)

vs. I scaled by |T − Tg|2ν , where ν is the exponent of
the coherence length ξ, ξ ∼ |T − Tg|−ν , and z is the dy-
namical exponent of the coherent time ξz. Based on their
experimental data they found ν = 1.7 and z = 4.8 for
B = 2, 3 and 4 T. On the basis of correlated pinning the-
ory, Nelson and Vinokur predicted another scaling relation
between the current density J and electric field E. When

magnetic field is aligned with the correlated defects, which
is the case of the upper mentioned experiments [2,8], this
relation has the form

E|t|−ν′(z′+1) = F±(|t|−3ν′Jφ0/C), (17)

where ν′ and z′ are the exponents governing the size
and time relaxation of fluctuations respectively, t = (T −
TBG)/TBG, TBG is the Bose-glass transition temperature
and F± represents two analytic functions for t > 0 and
t < 0 respectively [5]. Nelson and Vinokur found that
the data in references [2,8] fit the Bose-glass scaling rela-
tion (17) with ν′ ≈ 1.3± 0.5 and z′ ≈ 7± 2.

In equation (10) of our previous section, the energy Uc

is temperature and field dependent, and is proportional
to the vortex kink energy Ek of the Bose-glass theory,
Uc ∝ Ek ≡ d

√
ε̃1U0 (see Ref. [5]). Therefore, one may rea-

sonably assume Ek(T ) ∝ (T ∗ − T )δ, Jc0(T ) ∝ (T ∗ − T )α,
and ρf ∝ T with T ∗ being the irreversibility tempera-
ture where tilt modules ε̃1 vanishes, so according to equa-
tion (10) we expect

γ(T ) = γ0(T ∗ − T )δ−αp/kT, (18)

I ∝ xJc0(T ) ∝ x(T ∗ − T )α, (19)

V ∝ yJc0(T )ρf ∝ y(T ∗ − T )αT. (20)

In accordance with the observed Smax ≈ 2.5 at 4 T [2],
one may expect γ(TBG) ≈ 11.5. Assuming δ = 2.5, α = 3,
and p = 0.6, we get from equation (5) more than 100
E(J) isotherms near the TBG ≈ 78 K (as observed in
Refs. [2,8]). These curves are shown in Figure 2a. All
the isotherms collapsed nicely onto two curves (T > TBG

and T < TBG), consistent with the scaling of ν′ ∼ 1.2,
and z′ ∼ 7.2, as shown in Figure 2b, in fair agreement
with the similar Bose-glass scaling result of the data in
references [2,8].

4 Critical current and ac response

Most experiments with HTSC deal with thin flat sample
in a perpendicular magnetic field. Critical state models
like Bean model and its modifications are often used to
analyze the results where the hysteretic losses dominate.
However some problems with the amplitude dependence
of ac response still remain unsolved [9,17]. Several com-
mon features of the amplitude dependence of χ have been
experimentally observed for different kinds of materials:
a) a parallel shift of the in-phase susceptibility χ′ − T
curve with increasing hac toward lower temperatures is ob-
served; b) the onset of diamagnetism and dissipation does
not appear to depend on hac values; c) the out-of-phase χ′′
peak shifts to lower temperatures with increasing hac and
broadens in the low temperature side; d) the absorption
peak increases slightly when hac increases [9,16–20].

Since different loss mechanisms are not simply addi-
tive [18], it is desirable to have a unified consistent descrip-
tion for the critical current. On the basis of our nonlinear
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Fig. 2. (a) The I-V curves derived from equation (5). (b) (•)
Scaling of the isotherms in (a) with the Bose-glass scaling rela-
tionship of Nelson and Vinokur in reference [5]. (◦) The original
experimental result of reference [2].

response function (5, 10), it is easy to express explicitly
the critical current density Jc by a certain criterion of
electric field Ec as E(Jc) ≡ Ec in the form

Jc = Jc0xc = Jc0

[
1− γ−1/p

[
ln
(
xc

yc

)]1/p

+ yc

]
(21)

with yc = Ec/Jc0ρf . In the magnetization procedure, Ec

corresponds to the electric field E(r, t) due to the certain
sweep rate of the magnetic field.

Unlike the ideal Bean model, the critical current den-
sity Jc defined by our materials equation as equation (21)

Fig. 3. Plots of hac as a function of (1 − Tp/T
∗) in the

above experiments. Tp is the temperature at the peak of χ′′.
The (�) for YBCO bulk sample [19], (•) for single crystal of
Pr1.85Ce0.15CuO4−y at f = 111 Hz and µ0H = 1 T [20], (�)
for single crystal of Pr1.85Ce0.15CuO4−y at f = 111 Hz and
µ0H = 0.1 T [20], (H) for a disk (diameter 1 mm) of YBCO
film [17], (�) for a rectangle (2× 3 mm2) of YBCO film [17],
(◦) for a ring (width 50 µm) of YBCO film [17], (N) for a
ring (width 25 µm) of YBCO film [17].

increases slightly with increasing Ec which is proportional
to the amplitude hac for a given frequency ω. Since the sat-
uration magnetic moment is proportional to Jc for various
samples and configurations as discussed in reference [17],
the observed amplitude dependence of χ′′max can be rea-
sonably understood.

The peak in χ′′ occurs just when the ac current
has penetrated the sample to a distance d/2. Thus the
criterion for the peak in susceptibility is
chac

2πd
= Jc(Tp)

= Jc0(Tp)

[
1− γ−1/p(Tp)

[
ln
(
Jcρf

Ec

)]1/p

+
Ec

Jc0ρf

]
·

(22)

This relation characterizes the peak position shift effected
by the amplitude hac.

We find that the experimentally measured χ′′ peak
position Tp can be approximately described by a general
phenomenological relationship as

hac ∝ [T ∗ − Tp(hac)]α, (23)

where T ∗ ≡ Tp(hac = 0), and α is a numerical exponent.
This power law shift of Tp to lower values by increasing
amplitude hac is consistent with our equation (22), which
shows

hac ∝ Jc0(Tp), (24)

and we have the relation Jc0(T ) ∝ (T ∗ − T )α in equa-
tion (19) of Section 3.

In Figure 3, the experimental data of χ′′max peak posi-
tion Tp from different references in literature are summa-
rized, where we see the power law equation (23) holds in
general.
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The above discussion can be applied straightforwardly
to estimate the ac losses, since, for a given amplitude of
the ac magnetic field, the loss per cycle is proportional to
the imaginary part of the complex permeability µ′′ [18].

5 Summary

We show a nonlinear response function for describing the
macroscopic electromagnetic properties of high tempera-
ture superconductors with inhomogeneities or defects as
pinning centers. This function is compatible with different
suggested model barriers U(J) and able to make a consis-
tent description of the vortex system near transition. It is
useful for understanding the experimental results of both
transport properties and ac susceptibility measurements.

This work was supported by the Chinese Foundation of Doc-
toral Education, Chinese NSF, and the National Center for
R&D on Superconductivity of China.

References

1. For a review, see, G. Blatter, M.V. Feigel’man, V.B.
Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys.
66, 1125 (1994); also, E.H. Brandt, Rep. Prog. Phys. 58,
1465 (1995).

2. R.H. Koch, V. Foglietti, W.J. Gallagher, G. Koren, A.
Gupta, M.P.A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).

3. P.L. Gammel, L.F. Schneemeyer, D.J. Bishop, Phys. Rev.
Lett. 66, 953 (1991).

4. D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43,
130 (1991); M.P.A. Fisher, Phys. Rev. Lett. 62, 1415
(1989).

5. D.R. Nelson, V.M. Vinokur, Phys. Rev. Lett. 68, 2398
(1992); Phys. Rev. B 48, 13060 (1993).

6. S.N. Coppersmith, M. Inui, P.B. Littlewood, Phys. Rev.
Lett. 64, 2585 (1990).

7. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964).
8. R.H. Koch, V. Foglietti, M.P.A. Fisher, Phys. Rev. Lett.

64, 2586 (1990).
9. For a review, see, Magnetic Susceptibility of Supercon-

ductors and Other Spin System, edited by R.A. Hein,
T.L. Francavilla, D.H. Libenberg (Plenum, New York and
London, 1991); also reference [17].

10. J. Bardeen, M.J. Stephen, Phys. Rev. 140, A1197 (1965).
11. E. Zeldov, N.M. Amer, G. Koren, A. Gupta, R.J. Gambino,

M.W. McElfresh, Phys. Rev. Lett. 62, 3093 (1989).
12. M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M.

Vinokur, Phys. Rev. Lett. 63, 2303 (1989).
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